Transport equation in generalized Campanato spaces

نویسندگان

چکیده

In this paper we study the transport equation in $\mathbb{R}^{n} \times (0,T)$, $T >0$, $n\ge 2$, $$ \partial \_t f + v\cdot \nabla = g, \quad f(\cdot,0)= f\_0 \text{in }\mathbb{R}^{n}, generalized Campanato spaces $\mathscr{L}^{s}{{q(p, N)}}(\mathbb{R}^{n})$. The critical case is particularly interesting, and applied to local well-posedness problem for incompressible Euler equations a space close Lipschitz our companion \[Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 2, 201–241]. $s=q=N=1$, have embeddings $B^{1}{\infty, 1} (\mathbb R^n) \hookrightarrow \mathscr{L}^{1}{1(p, 1)}(\mathbb {R}^{n}) C^{0, R^n)$, where R^n)$ $C^{0, are Besov spaces, respectively. For $f\_0\in {R}^{n})$, $v\in L^1(0,T; \mathscr {L}^{1}{1(p, {R}^{n})))$ $g\in {R}^{n})))$, prove existence uniqueness of solutions $L^\infty(0,T; \smash{\mathscr{L}^{1}{1(p, {R}^{n})})$ such that |f|{L^\infty(0,T; {R}^{n})))} \le C \big( |v|{L^1(0,T; {R}^{n})))}, |g|{L^1(0,T; 1)} {R}^{n})))}\big). Similar results other cases also proved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of generalized QCA-functional equation in P-Banach spaces

In  this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.

متن کامل

Generalized hyperstability of the cubic functional equation in ultrametric spaces

‎In this paper‎, ‎we present the‎ generalized hyperstability results of cubic functional equation in‎ ‎ultrametric Banach spaces using the fixed point method‎.

متن کامل

Estimates in the Generalized Campanato-john-nirenberg Spaces for Fully Nonlinear Elliptic Equations

We establish estimates in BMO and Campanato-John-Nirenberg spaces BMOψ for the second derivatives of solutions to the fully nonlinear elliptic equation F(D2u, x) = f (x).

متن کامل

Uperieure S Ormale N Ecole Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation

We derive uniform weighted L 2 and Morrey-Campanato type estimates for Helmholtz Equations in a medium with a variable index which is not necessarily constant at innnity. Our technique is based on a multiplier method with appropriate weights which generalize those of Morawetz for the wave equation. We also extend our method to the wave equation.

متن کامل

On the Theory of Homogeneous Lipschitz Spaces and Campanato Spaces

In this paper the equivalence between the Campanato spaces and homogeneous Lipschitz spaces is shown through the use of elementary and constructive means. These Lipschitz spaces can be defined in terms of derivatives as well as differences. Introduction. The Campanato spaces have previously been stated by Taibleson and Weiss [13] to be duals of certain Hardy spaces. Further results will be fort...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2023

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1394