Transport equation in generalized Campanato spaces
نویسندگان
چکیده
In this paper we study the transport equation in $\mathbb{R}^{n} \times (0,T)$, $T >0$, $n\ge 2$, $$ \partial \_t f + v\cdot \nabla = g, \quad f(\cdot,0)= f\_0 \text{in }\mathbb{R}^{n}, generalized Campanato spaces $\mathscr{L}^{s}{{q(p, N)}}(\mathbb{R}^{n})$. The critical case is particularly interesting, and applied to local well-posedness problem for incompressible Euler equations a space close Lipschitz our companion \[Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 2, 201–241]. $s=q=N=1$, have embeddings $B^{1}{\infty, 1} (\mathbb R^n) \hookrightarrow \mathscr{L}^{1}{1(p, 1)}(\mathbb {R}^{n}) C^{0, R^n)$, where R^n)$ $C^{0, are Besov spaces, respectively. For $f\_0\in {R}^{n})$, $v\in L^1(0,T; \mathscr {L}^{1}{1(p, {R}^{n})))$ $g\in {R}^{n})))$, prove existence uniqueness of solutions $L^\infty(0,T; \smash{\mathscr{L}^{1}{1(p, {R}^{n})})$ such that |f|{L^\infty(0,T; {R}^{n})))} \le C \big( |v|{L^1(0,T; {R}^{n})))}, |g|{L^1(0,T; 1)} {R}^{n})))}\big). Similar results other cases also proved.
منابع مشابه
Stability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملGeneralized hyperstability of the cubic functional equation in ultrametric spaces
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.
متن کاملEstimates in the Generalized Campanato-john-nirenberg Spaces for Fully Nonlinear Elliptic Equations
We establish estimates in BMO and Campanato-John-Nirenberg spaces BMOψ for the second derivatives of solutions to the fully nonlinear elliptic equation F(D2u, x) = f (x).
متن کاملUperieure S Ormale N Ecole Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation
We derive uniform weighted L 2 and Morrey-Campanato type estimates for Helmholtz Equations in a medium with a variable index which is not necessarily constant at innnity. Our technique is based on a multiplier method with appropriate weights which generalize those of Morawetz for the wave equation. We also extend our method to the wave equation.
متن کاملOn the Theory of Homogeneous Lipschitz Spaces and Campanato Spaces
In this paper the equivalence between the Campanato spaces and homogeneous Lipschitz spaces is shown through the use of elementary and constructive means. These Lipschitz spaces can be defined in terms of derivatives as well as differences. Introduction. The Campanato spaces have previously been stated by Taibleson and Weiss [13] to be duals of certain Hardy spaces. Further results will be fort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matematica Iberoamericana
سال: 2023
ISSN: ['2235-0616', '0213-2230']
DOI: https://doi.org/10.4171/rmi/1394